几道初中数学题目,求答案及解析(初中数学答案)

2023-04-08 17:05:13 最新游戏资讯 lvseyouxi

(1)因为:点P到两坐标轴的距离相等

所以:点P在1、3象限夹角平分线上,或者在2、4象限夹角平方线上

1、3象限夹角平分线的解析式是y=x

联立y=x和y=-1/3x+2解得x=3/2、y=3/2,点P的坐标是(3/2,3/2),所以点P在之一象限

2、4象限夹角平分线的解析式是y=-x

联立y=-x和y=-1/3x+2解得x=-3,y=3,点P的坐标是(-3,3),所以点P在第二象限

综上所述:点P所在的象限是1和2两个象限

(2)m=1

mxsup2;-4x+4=0的根是x1=x2=2

xsup2;-4mx+4msup2;-4m-5=0→xsup2;-4x-5=0,(x-5)(x+1)=0,x1=5,x2=-1

(3)答案是45°

如图:OH是垂径,OH垂直平分AB,OH=AH=BH

所以△OHA、△OHB都是等腰直角三角形

∴∠AOB=90°

在根据:同弧所对的圆周角是圆心角度数的一半可得

∠C=45°

初中数学试题及答案

初中数学试题及答案

选择题

(1)有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )。

A、21 B、25 C、29 D、58

答案:C

(2)某开发商按照分期付款的形式售房。张明家购买了一套,现价为12万元的新房,购房时需首付(之一年)款3万元,从第二年起,以后每年应付房款5000元,与上一年剩余欠款的利息之和。已知剩余欠款的年利率为0.4%,第( )年张明家需要交房款5200元。

A、7 B、8 C、9 D、10

答案D

(3)若干名战士排成8列长方形的队列,若增加120人或减少120人都能组成一个新的正方形队列,那么,原有战士( )人。

A、904 B、136 C、240 D、360

解:A、B

此题反推一下即可。所以选择A、B

(4)一个三位数,它的反序数也是一个三位数,用这个三位数减去它的反序数得到的差不为0,而且是4的倍数。那么,这样的三位数有( )个。

A、2 B、30 C、60 D、50

答案:D

这个三位数与它的反序数除以四的余数应该相等,

不妨设这个三位数是ABC,则它的反序数为CBA。于是有ABC-CBA=4的倍数,即100A+10B+C-(100C+10B+C)=4的倍数,整理得99(A-C)=4的倍数,即可知A-C是4的倍数即可,但是不能使这两个三位数的差为0,所以分别有5,1;6,2;7,3;8,4;9,5四组。每组中分别有10个,那么共有50个。

(5)有若干条长短、粗细相同的绳子,如果从一端点火,每根绳子都正好8分钟燃尽。现在用这些绳子计量时间,比如:在一根绳子的两端同时点火,绳子4分钟燃尽;在一根绳子的一端点火,燃尽的同时点第二根绳子的一端,两根绳子燃尽可计时16分钟。

规则:①计量一个时间最多只能使用3条绳子。

②只能在绳子的端部点火。

③可以同时在几个端部点火。

④点着的火中途不灭。

⑤不许剪断绳子,或将绳子折起。

根据上面的5条规则下列时间能够计量的有( )。

A、6分钟 B、7分钟 C、9分钟

D、10分钟 E、11分钟、 F、12分钟

答案:A,B,C,D,F。只有11分钟计量不出来。

通过上面对数学选择题试题的知识练习学习,希望同学们对上面的题目知识都能很好的掌握,相信同学们会从中学习的更好的哦。

因式分解同步练习(解答题)

关于因式分解同步练习知识学习,下面的题目需要同学们认真完成哦。

因式分解同步练习(解答题)

解答题

9.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)

同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

因式分解同步练习(填空题)

填空题

5.已知9x2-6xy+k是完全平方式,则k的值是________.

6.9a2+(________)+25b2=(3a-5b)2

7.-4x2+4xy+(_______)=-(_______).

8.已知a2+14a+49=25,则a的值是_________.

答案:

5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(选择题)

同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。

因式分解同步练习(选择题)

选择题

1.已知y2+my+16是完全平方式,则m的值是( )

A.8 B.4 C.±8 D.±4

2.下列多项式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

3.下列各式属于正确分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

4.把x4-2x2y2+y4分解因式,结果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

1.C 2.D 3.B 4.D

以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。

整式的乘除与因式分解单元测试卷(填空题)

下面是对整式的乘除与因式分解单元测试卷中填空题的练习,希望同学们很好的完成。

填空题(每小题4分,共28分)

7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________

8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .

9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)

10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ .

11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.

(a+b)1=a+b;

(a+b)2=a2+2ab+b2;

(a+b)3=a3+3a2b+3ab2+b3;

(a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.

12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设之一年前的新芽数为a)

第n年12345…

老芽率aa2a3a5a…

新芽率0aa2a3a…

总芽率a2a3a5a8a…

照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).

13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .

答案:

7.

考点:零指数幂;有理数的乘方。1923992

专题:计算题。

分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;

(2)根据乘方运算法则和有理数运算顺序计算即可.

解答:解:(1)根据零指数的意义可知x﹣4≠0,

即x≠4;

(2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5.

点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1.

8.

考点:因式分解-分组分解法。1923992

分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组.

解答:解:a2﹣1+b2﹣2ab

=(a2+b2﹣2ab)﹣1

=(a﹣b)2﹣1

=(a﹣b+1)(a﹣b﹣1).

故答案为:(a﹣b+1)(a﹣b﹣1).

点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解.

9.

考点:列代数式。1923992

分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和.

解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z.

点评:解决问题的关键是读懂题意,找到所求的量的等量关系.

10.

考点:平方差公式。1923992

分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.

解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,

(2a+2b)2﹣12=63,

(2a+2b)2=64,

2a+2b=±8,

两边同时除以2得,a+b=±4.

点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.

11

考点:完全平方公式。1923992

专题:规律型。

分析:观察本题的`规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.

解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.

点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.

12

考点:规律型:数字的变化类。1923992

专题:图表型 。

分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为

21/34≈0.618.

解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和,

所以第8年的老芽数是21a,新芽数是13a,总芽数是34a,

则比值为21/34≈0.618.

点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.

13.

考点:整式的混合运算。1923992

分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.

解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,

a=4﹣1,

解得a=3.

故本题答案为:3.

点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.

以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。

整式的乘除与因式分解单元测试卷(选择题)

下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。

整式的乘除与因式分解单元测试卷

选择题(每小题4分,共24分)

1.(4分)下列计算正确的是( )

A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6

2.(4分)(x﹣a)(x2+ax+a2)的计算结果是( )

A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3

3.(4分)下面是某同学在一次检测中的计算摘录:

①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2

其中正确的个数有( )

A.1个B.2个C.3个D.4个

4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是( )

A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1

5.(4分)下列分解因式正确的是( )

A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)

6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )

A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab

答案:

1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992

分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.

解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;

B、应为a4÷a=a3,故本选项错误;

C、应为a3a2=a5,故本选项错误;

D、(﹣a2)3=﹣a6,正确.

故选D.

点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.

2.

考点:多项式乘多项式。1923992

分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.

解答:解:(x﹣a)(x2+ax+a2),

=x3+ax2+a2x﹣ax2﹣a2x﹣a3,

=x3﹣a3.

故选B.

点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.

3.

考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992

分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.

解答:解:①3x3(﹣2x2)=﹣6x5,正确;

②4a3b÷(﹣2a2b)=﹣2a,正确;

③应为(a3)2=a6,故本选项错误;

④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.

所以①②两项正确.

故选B.

点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.

4

考点:完全平方公式。1923992

专题:计算题。

分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.

解答:解:x2是一个正整数的平方,它后面一个整数是x+1,

它后面一个整数的平方是:(x+1)2=x2+2x+1.

故选C.

点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.

5,

考点:因式分解-十字相乘法等;因式分解的意义。1923992

分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.

解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;

B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;

C、是整式的乘法,不是分解因式,故本选项错误;

D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.

故选B.

点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.

6

考点:因式分解-十字相乘法等;因式分解的意义。1923992

分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.

解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;

B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;

C、是整式的乘法,不是分解因式,故本选项错误;

D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.

故选B.

点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.

6.

考点:列代数式。1923992

专题:应用题。

分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分.

解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2.

可绿化部分的面积为ab﹣bc﹣ac+c2.

故选C.

点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.

用字母表示数时,要注意写法:

①在代数式中出现的乘号,通常简写做“”或者省略不写,数字与数字相乘一般仍用“×”号;

②在代数式中出现除法运算时,一般按照分数的写法来写;

③数字通常写在字母的前面;

④带分数的要写成假分数的形式.

以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工

初中数学试题总汇

解答题

1.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

1.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)

同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

填空题

2.已知9x2-6xy+k是完全平方式,则k的值是________.

3.9a2+(________)+25b2=(3a-5b)2

4.-4x2+4xy+(_______)=-(_______).

5.已知a2+14a+49=25,则a的值是_________.

答案:

2.y23.-30ab 4.-y2;2x-y 5.-2或-12

选择题

6.已知y2+my+16是完全平方式,则m的值是( )

A.8 B.4 C.±8 D.±4

7.下列多项式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

8.下列各式属于正确分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

9.把x4-2x2y2+y4分解因式,结果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

6.C 7.D8.B9.D

初中数学试题精选之圆

因式分解同步练习(解答题)

解答题

9.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)

同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

因式分解同步练习(填空题)

填空题

5.已知9x2-6xy+k是完全平方式,则k的值是________.

6.9a2+(________)+25b2=(3a-5b)2

7.-4x2+4xy+(_______)=-(_______).

8.已知a2+14a+49=25,则a的值是_________.

答案:

5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(选择题)

同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。

因式分解同步练习(选择题)

选择题

1.已知y2+my+16是完全平方式,则m的值是( )

A.8 B.4 C.±8 D.±4

2.下列多项式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

3.下列各式属于正确分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

4.把x4-2x2y2+y4分解因式,结果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

1.C 2.D 3.B 4.D

以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。

数学初中测试题及答案

数学初中测试题及答案 篇1

一、填空题。(28分)

1.三峡水库总库容39300000000立方米,把这个数改写成“亿”作单位的数是( )。

2.79 的分数单位是( ),再增加( )个这样的单位正好是最小的质数。

3.在72.5%,79 ,0.7255,0.725 中,更大的数是( ),最小的数是 ( )。

4.把3米长的绳子平均分成8段,每段是全长的( ),每段长( )。

5.3 ÷( )=9:( )= =0.375=( )% (每空0.5分)

6.饮料厂从一批产品中抽查了40瓶饮料,其中8瓶不合格,合格率是( ) 。

7.0.3公顷=( )米2 1800 厘米3 =( )分米3

2.16米 =( )厘米 3060克=( )千克

8.第30届奥运会于2012年在英国伦敦举办,这一年的之一季度有( )天。

9.汽车4小时行360千米,路程与时间的比是( ),比值是( )。

10.在比例尺是1∶15000000的地图上,图上3厘米表示实际距离( )千米。

11.一枝钢笔的单价是a元,买6枝这样的钢笔需要( )元。

12.有一张长48厘米,宽36厘米的长方形纸,如果要裁成若干同样大小的正方形而无剩余,裁成的小正方形的边长更大是( )厘米。

13.学校有8名教师进行象棋比赛,如果每2名教师之间都进行一场比赛,一共要比赛( )场。

14.如右图,如果平行四边形的面积是8平方米,

那么圆的面积是( )平方米。

15.一个正方体的底面积是36 厘米 2,这个正方体的体积是( )立方厘米。

16.一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是1.2米,圆锥的高是( )米。

17.找出规律,填一填。

△□○☆△□○☆△□○☆△□○☆…… 第33个图形是( )。

18.右图为学校、书店和医院的平面图。

在图上,学校的位置是(7,1),医院

的位置是( , )。以学校为观

测点,书店的位置是( 偏 )( °)的方向上。

19. 在一个盒子里装了5个白球和5个黑球,球除颜色外完全相同。从中任意摸出一个球,摸到白球的可能性是( )( ) (1分)。

答案:

1.(393亿)。 2.(1/9),(11) 3.( 79 ),( 72.5%)。

4.(1/8),(3/8米 )。 5.(8),(24),(6) , 37.5% 。 6. (80%) 。

7.(3000 ), (1.8),(216),( 3.06). ⑧ 91; ⑨90∶1、90;

⑩450 ⑾6a; ⑿12; ⒀28; ⒁12.56; ⒂216; ⒃3.6;

⒄△; ⒅2,4、东偏北,45; ⒆1/2 。

数学初中测试题及答案 篇2

解答题

1.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

1.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)

同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

填空题

2.已知9x2-6xy+k是完全平方式,则k的值是________.

3.9a2+(________)+25b2=(3a-5b)2

4.-4x2+4xy+(_______)=-(_______).

5.已知a2+14a+49=25,则a的值是_________.

答案:

2.y23.-30ab 4.-y2;2x-y 5.-2或-12

选择题

6.已知y2+my+16是完全平方式,则m的.值是( )

A.8 B.4 C.±8 D.±4

7.下列多项式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

8.下列各式属于正确分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

9.把x4-2x2y2+y4分解因式,结果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

6.C 7.D8.B9.D

数学初中测试题及答案 篇4

初二数学下册试题:第14章达标测试题

一、选择题(每小题3分,共30分)

1.当分式|x|-3x+3 的值为零时,x的值为 ()

A、0 B、 3 C、-3 D、±3

2.化简m2-3m9-m2 的结果是()

A、mm+3B、-mm+3 C、mm-3 D、m3-m

3.下列各式正确的是()

A、-x+y-x-y = x-yx+y B、-x+yx-y = -x-yx-y

C、-x+y-x-y =x+yx-yD、-x+y-x-y = -x-yx+y

4.如果把分式x+2yx 中的x和y都扩大10倍,那么分式的值()

A.扩大10倍 B、缩小10倍C、扩大2倍D、不变

5.计算(x-y )2 等于 ()

A、x2-yB、x2yC、-x2y2D、x2y2

6、化简a2a-1 -a-1的结果为()

A.2a-1a-1B、-1a-1C、1a-1D、2

7、把分式x2-25x2-10x+25 约分得到的结果是()

A、x+5x-5B、x-5x+5C、1 D、110x

8、分式1x2-1 有意义的条件是 ()

A、x≠1B、x≠-1C、x≠±1 D、x≠0

9、已知1 x 2 ,则分式| x-2|x-2 -|x-1|x-1 + |x|x 的值为 ()

A、2B、 1C、0 D、-1

10、一项工程,甲单独做需要x天完成,乙单独做需要y天完成,则甲、乙合做需几天完成 ()

A、 x+y B、x+yxyC、xyx+yD、x+y2

二、填空题(每小题3分,共15分)

11.当x=_________时,分式x+1x-1 无意义。

12.若代数式x-1x2+1 的值等于0,则x=_____________。

13、分式34xy ,12x-2y ,23x2-3xy 的最简公分母是_______________

14、已知a-b=5 ,ab=-3 ,则1a -1b =______________

15、约分 3m2n3(x2-1)9mn2(1-x) = ______________________。

三、解答题(共55分)

16、把下列各式约分(10分)

(1)4a2b330ab2 (2) m2-2m+11-m2 (3)(a-b)(b-a)3

17.把下列各式通分(10分)

(1)z3x2y2 ,y5x2z2 ,x4y2z2 (2)x+55x-20 ,5x2-8x+16 ,x4-x

18、计算(16分)

(1) 22a+3 +33-2a +124a2-9(2)1-a-ba-2b ÷a2-b2a2-4ab+4b2

(3)x+1-x2x-1(4) 2x+4x2-4x+4 ÷x+22x-4 ÷1x2-4

19、化简(12分)

(1) 2x+4x2-4x+4 ÷x+22x-4 ?(x2-4)(2) (2xx2-4 -1x-2 )?x+2x-1

(3)2a+1 -a-2a2-1 ÷a2-2aa2-2a+1

20.阅读材料(7分)

因为11×3 =12 (1-13 )13×5 =12 (13 -15 )

15×7 =12 (15 -17 )…117×19 =12 (117 -119 )

所以11×3+ 13×5+ 15×7+ … + 117×19

= 12 (1-13 )+ 12 (13 -15 )+ 12 (15 -17 ) + … + 12 (117 -119 )

= 12 (1-119 )

= 919

解答下列问题:

(1)在和式11×3+ 13×5+ 15×7+ …中的第5项为_______________,第n项为___________________

(2)由12×4 +14×6 +16×8 +…式中的第n项为____________。

(3)从以上材料中得到启发,请你计算。

1(x-1)(x-2) +1(x-2)(x-3) +1(x-3)(x-4) +…1(x-99)(x-100)

初中数学奥数题10道(有答案)

1、 两个男孩各骑一辆自行车,从相距2o英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1o英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案

每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2o英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。

许多人试图用复杂的 *** 求解这道题目。他们计算苍蝇在两辆自行车车把之间的之一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼(john von neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单 *** ,而去采用无穷级数求和的复杂 *** 。

冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的 *** .”他解释道

2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”

正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。

在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。

如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

答案

由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。

既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。

这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

3、 一架飞机从a城飞往b城,然后返回a城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从a城到b城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?

怀特先生论证道:“这股风根本不会影响平均地速。在飞机从a城飞往b城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从a城飞往b城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

答案

怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。

怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。

逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。

风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

4、 《孙子算经》是唐初作为“算学”教科书的的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平 *** ,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的 *** 。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?

答案:日租金360元。

虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。

当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=x=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=x=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。

7.abcd乘9=dcba

a=? b=? c=? d=?

答案:d=9,a=1,b=0,c=8

1089*9=9801

8、漆上颜色的正方体

设想你有一罐红漆,一罐蓝漆,以及大量同样大小的立方体木块。你打算把这些立方体的每一面漆成单一的红色或单一的蓝色。例如,你会把一块立方体完全漆成红色。第二块,你会决定漆成3面红3面蓝。第三块或许也是3面红3面蓝,但是各面的颜色与第二块相应各面的颜色不完全相同。

按照这种做法,你能漆成多少互不相同的立方体?如果一块立方体经过翻转,它各面的颜色与另一块立方体的相应各面相同,这两块立方体就被认为是相同的。

答案总共漆成10块不同的立方体。

9.老人展转病榻已经几个月了,他想,去见上帝的日子已经不远了,便把孩子们叫到床前,铺开自己一生积蓄的钱财,然后对老大说:

“你拿去100克朗吧!”

当老大从一大堆钱币中,取出100克朗后,父亲又说:

“再拿剩下的十分之一去吧!”

于是,老大照拿了。

轮到老二,父亲说:“你拿去200克朗和剩下的十分之一。”

老三分到300克朗和剩下的十分之一,老四分到400克朗和剩下的十分之一,老五、老六、……都按这样的分法分下去。

在全部财产分尽之后,老人用微弱的声调对儿子们说:“好啦,我可以放心地走了。”

老人去世后,兄弟们各自点数自己的钱数,却发现所有人分得的遗产都相等。

聪明的朋友算一算:这位老人有多少遗产,有几个儿子,每个儿子分得多少遗产。

答案9个儿子,8100克朗财产

10、工资的选择

假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:

(a) 工资以年薪计,之一年为4000美元以后每年加800美元;

(b) 工资以半年薪计,之一个半年为2000美元,以后每半年增加200美元。

你选择哪一种方案?为什么?

答案:第二种方案要比之一种方案好得多

初中数学智力题及答案

智力题1(海盗分金币)——海盗分金币

5个海盗抢得100枚金币后,讨论如何进行公正分配。他们商定的分配原则是:

(1)抽签确定各人的分配顺序号码(1,2,3,4,5);

(2)由抽到1号签的海盗提出分配方案,然后5人进行表决,如果方案得到超过半数的人同意,就按照他的方案进行分配,否则就将1号扔进大海喂鲨鱼;

(3)如果1号被扔进大海,则由2号提出分配方案,然后由剩余的4人进行表决,当且仅当超过半数的人同意时,才会按照他的提案进行分配,否则也将被扔入大海;

(4)依此类推。

这里假设每一个海盗都是绝顶聪明而理性,他们都能够进行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。同时 还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更多的金币呢?

智力题2(猜牌问题)

S 先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对话:

P先生:我不知道这张牌。

Q先生:我知道你不知道这张牌。

P先生:现在我知道这张牌了。

Q先生:我也知道了。

听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。

请问:这张牌是什么牌?

智力题3(燃绳问题)

烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的' *** 来计时一个小时十五分钟呢?

智力题4(乒乓球问题)

假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是更先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?

智力题5(喝汽水问题)

1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

智力题6(分割金条)

你让工人为你工作7天,给工人的回报是一根金条。金条平分成相连的7段,你必须在每天结束时给他们一段金条,如果只许你两次把金条弄断,你如何给你的工人付费?

智力题7(鬼谷考徒)

孙膑,庞涓都是鬼谷子的徒弟;一天鬼出了这道题目:他从2到99中选出两个不同的整数,把积告诉孙,把和告诉庞。

庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。

孙说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。

庞说:既然你这么说,我现在也知道这两个数字是什么了。

问这两个数字是什么?为什么?

智力题8(舀酒难题)

据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?

智力题9(五个囚犯)——一道真正难倒亿人的智力题,这是微软的面试题。

5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。问他们中谁的存活机率更大??

提示:

1,他们都是很聪明的人

2,他们的原则是先求保命,再去多杀人

3,100颗不必都分完

4,若有重复的情况,则也算更大或最小,一并处死

智力题10(国王与预言家)

在临上刑场前,国王对预言家说:“你不是很会预言吗?你怎么不能预言到你今天要被处死呢?我给你一个机会,你可以预言一下今天我将如何处死你。你如果预言对了,我就让你服毒死;否则,我就绞死你。”

但是聪明的预言家的回答,使得国王无论如何也无法将他处死。

请问,他是如何预言的?

智力题11(奇怪的村庄)

某地有两个奇怪的村庄,张庄的人在星期一、三、五说谎,李村的人在星期二、四、六说谎。在其他日子他们说实话。一天,外地的王从明来到这里,见到两个人,分别向他们提出关于日期的题。两个人都说:"前天是我说谎的日子。"

如果被问的两个人分别来自张庄和李村,那么这一天是星期几?

智力题12(谁偷了船长的戒指.?)

英国货船"伊丽莎白"号,首次远航日本。清晨,货船进人日本领海,船长大卫刚起床便去布置进港事宜,将一枚钻石戒指遗忘在船长室里。

15分钟以后,他回到船长室时,发现那枚戒指不见了。船长立即把当时正在值班的大副、水手、旗手和厨师找来盘问,然而这几名船员都否认进过船长室。

各人都声称自己当时不在现场。

大副:"我因为摔坏了眼镜,回到房间里去换了一副,当时我肯定在自己的房间里。"

水手:"当时我正忙着打捞救生圈。"

旗手:"我把旗挂倒了,当时我正在把旗子重新挂好,"

厨师:"当时我正修理电冰箱。"

"难道戒指飞了?"平时便爱好侦探故事的大卫根据他们各自的陈述和相互作证的情况,略--思索,便找出了说谎者。事实证明,这个说谎者就是罪犯!

参考答案:

1.之一题:

1:96 2:0 3:0 4:2 5:2

首先,当对3的方案表决时,4会支持3,因为否则的话他就要被5反对,从而死。

因此,如果1,2死了,3的方案肯定是100,0,0,并且一定会得到3和4的支持,此时4,5的收入为0,因此1,2可以贿赂4,5而得到支持。

同时3的期望收入为100,他必定会不顾一切地反对1,2。

而如果1死了,2的方案肯定是98,0,1,1,并且一定会通过。

所以1的更优方案为96,0,0,2,2,并且一定会通过。

其实98,0,0,1,1也可以,并且有可能通过(看4,5的心情和残忍程度而定)。

2.第二题:

P之一句表明点数为A,Q,5,4其中一种

Q之一句表明花色为红桃或方块

P第二句表明不是A

Q第二句表明只能是方块5

答案:方块5

3.第三题:

取3根绳

先将之一根的两头都点燃,同时将第二根的某一头点燃。(t=0)

待之一根烧尽,点燃第二根的另一头。(t=30min)

待第二根烧尽,点燃第三根的两头。(t=45min)

待第三根烧尽,t=75min。

4.第四题:

先拿4个。

然后对方如果拿1到5个我就拿5到1个。于是无论如何剩下的球数为6n,n逐次少1,最后剩6个的时候恰好是我拿完,此时必胜。

5.第五题:

39瓶

20-10-5

拿4瓶换两瓶,再换一瓶,这个空瓶与5-4那个空瓶一起再换一瓶。20+10+5+2+1+1=39

6.第六题:

想了半天没想明白,上网找了找答案,竟然是……

答案中认为给出的金条可以收回,显然是认为工人都是理想化的工人,不用吃饭也不用消费啊……恕我想不到……(把金条分为1,2,4,有点儿像我们的纸币只需要1,2,5就能对付所有的找钱问题!)

7.第七题:

仿佛是(4,t),其中t=7,13,19,23,31,37,43,53,61,67,73,79,83,91

8.第八题:

将7装满,倒入11,再装满,倒满11,此时7中剩3。

将11倒空,7中3倒入11,再装满7倒入11,此时11中有10。

将7再次装满,倒满11,此时7中剩6。

将11再次倒空,7中6倒入11。

将7再次装满,倒满11,此时7中剩2。

9.第九题:

制定这个规则的人肯定是法西斯……

留楼,让我把第十题答案给出来……

这题果然有难度……

10.第十题:

“你不会毒死我的。”

11.第十一题:

同样可以穷举。

星期一。

12.自己思考

13.首先证明,如果有三个球P1,P2,P3,满足,要么P1较重,要么P2,P3中有一个较轻,并且有2个标准球,则质量不同的那个可以用一次天平找出。事 实上,取P1,P2与标准球比较,如果平衡则P3为较轻,如果P1,P2质量之和大于标准球则P1为较重的球,如果P1,P2质量之和小于标准球则P2为 较轻的球。同理可得,P1,P2,P3满足要么P1较轻,要么P2,P3中有一个较重的情况同样可以一次找出非标准球。

先分成三批(标记为A、B、C组),每批4个,取A,B两批称量。如果平衡,则质量不同的球在C组,可以用两次称量找出(先取两个与标准球作比较,如果平 衡再在余下的两个中取一个与标准球作比较,如果不平衡,则在其中取一个与标准球作比较。)如果不平衡(不妨假定A组轻于B组),则C组为标准球。将A,B 排列如下

1234

A○○○○

B○○○○

取A1,A2,B1(A'组)与A3,A4,B4(B'组)分别放在天平两边称量。如果A'组轻于B'组,则要么A1,A2中有较轻的,要么B4为较重 的,由前面的证明知,第三次称量可以找出质量不同的那个。如果A'组重于B'组,则要么B1为较重的,要么A3,A4中有较轻的,同样可以找出质量不同的 那个。如果平衡,则B2,B3中有较重的,分别放在天平两端即可找出较重的。